EE103 Midterm Examination May 8, 2017

Name \qquad ID
1.(20 points) True/False question (5 points each). Answer T for true and F for false.
(a). Impulse function $\delta(\mathrm{t})$ has a peak amplitude of 1.0. \qquad
(b). A linear time-invariant (LTI) system characterized by its impulse $h(t)$ produces its output for a given input $\mathrm{x} 1(\mathrm{t})$ as $\mathrm{y} 1(\mathrm{t})=\mathrm{x} 1(\mathrm{t})$ * $\mathrm{h}(\mathrm{t})$, where * denotes convolution integral. For $\mathrm{x} 2(\mathrm{t})=\mathrm{x} 1(\mathrm{t}-100)$, its corresponding output is $\mathrm{y} 2(\mathrm{t})=\mathrm{y} 1(\mathrm{t}-100)$.
(c). If a signal $\mathrm{x} 1(\mathrm{t})$ is periodic with period T 1 , another signal $\mathrm{x} 2(\mathrm{t})$ is periodic with period T 2 , then $\mathrm{x} 1(\mathrm{t})+\mathrm{x} 2(\mathrm{t})$ is also periodic for all $\mathrm{T} 1, \mathrm{~T} 2$ as long as they are real numbers including e, π, etc.
(d). Sinc $\pi t=(\sin \pi t) / \pi t$ is an odd function of t.
2. (20 points) For $x(t)=2 u(t-1) r(t-1)$, where $u(t)=1$ for $t \geq 0$, and 0 for $t<0, r(t)=t$ for $t \geq 0$ and 0 for $t<0$. Draw the odd function component of $x(t)$.
3. (30 points) Consider the RL circuit shown below.

The voltage across R, that is $V_{R}(t)=R i(t)$ is taken as output $y(t)$ for input $x(t)=v(t)$.
(a).(15 points) Express $\mathbf{x}(\mathbf{t})$ in terms of $\mathbf{y}(\mathrm{t})=\mathrm{V}_{\mathrm{R}}(\mathrm{t})$.
(b). (15 points) Let $R=1 \Omega, L=1 H$ and $x(t)=v(t)=\delta(t)$. Determine the impulse response $\mathbf{h (t)}$. (hint: Laplace transforform of $\delta(\mathrm{t})$ and that of $d y(t) / d t$ is $s Y(s)$, that of $y(t)$ is $Y(s)$. Inverse Lapace transform of [a/(s+b)] is [a exp(-bt)].
(4). (30 points) Consider a system with its $x(t)-y(t)$ relationship characterized by $h(t)$.

(a). (15 points) When $h(t)=[\exp (-2 t)-\exp (-3 t)] u(t)$ and $x(t)=u(t)$, a unit step function, find $\mathbf{y}(\mathrm{t})$.
(b). (15 points) For $H(j w)=2 /(4+j w)$, where $w=2 \pi f$, find $y(t)$ for $x(t)=2 \sin$ 3t. You can express $y(t)$ as a sinusoidal function with a phase angle in the form of $\arctan (a / b)$ with numerical values of a and b.

